Maintenance of generalized association rules with multiple minimum supports

نویسندگان

  • Ming-Cheng Tseng
  • Wen-Yang Lin
چکیده

Mining generalized association rules among items in the presence of taxonomy has been recognized as an important model in data mining. Earlier work on generalized association rules confined the minimum supports to be uniformly specified for all items or items within the same taxonomy level. This constraint would restrain an expert from discovering more interesting but much less supported association rules. In our previous work, we have addressed this problem and proposed two algorithms, MMS_Cumulate and MMS_Stratify. In this paper, we examined the problem of maintaining the discovered multi-supported, generalized association rules when new transactions are added into the original database. We proposed two algorithms, UD_Cumulate and UD_Stratify, which can incrementally update the discovered generalized association rules with non-uniform support specification and are capable of 2 effectively reducing the number of candidate sets and database re-scanning. Empirical evaluation showed that UD_Cumulate and UD_Stratify are 2-6 times faster than running MMS_Cumulate or MMS_Stratify on the updated database afresh.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Remining of Generalized Multi-supported Association Rules under Support Update

Mining generalized association rules among items in the presence of taxonomy and with nonuniform minimum support has been recognized as an important model in data mining. In our previous work, we have investigated this problem and proposed two algorithms, MMS_Cumulate and MMS_Stratify. In real applications, however, the work of discovering interesting association rules is an iterative process. ...

متن کامل

Efficient mining of generalized association rules with non-uniform minimum support

Mining generalized association rules between items in the presence of taxonomies has been recognized as an important model in data mining. Earlier work on generalized association rules confined the minimum supports to be uniformly specified for all items or for items within the same taxonomy level. This constraint on minimum support would restrain an expert from discovering some deviations or e...

متن کامل

Fast Algorithm for Mining Generalized Association Rules

In this paper, we present a new algorithm for mining generalized association rules. We develop the algorithm which scans database one time only and use Tidset to compute the support of generalized itemset faster. A tree structure called GIT-tree, an extension of IT-tree, is developed to store database for mining frequent itemsets from hierarchical database. Our algorithm is often faster than MM...

متن کامل

Discovering high utility itemsets with multiple minimum supports

Generally, association rule mining uses only a single minimum support threshold for the whole database. This model implicitly assumes that all items in the database have the same nature. In real applications, however, each item can have different nature such as medical datasets which contain information of both diseases and symptoms or status related to the diseases. Therefore, association rule...

متن کامل

An improved approach to find membership functions and multiple minimum supports in fuzzy data mining

Fuzzy mining approaches have recently been discussed for deriving fuzzy knowledge. Since items may have their own characteristics, different minimum supports and membership functions may be specified for different items. In the past, we proposed a genetic-fuzzy data-mining algorithm for extracting minimum supports and membership functions for items from quantitative transactions. In that paper,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Intell. Data Anal.

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2004